Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds.

نویسندگان

  • Naoko Shimada-Shimizu
  • Takashi Hisamitsu
  • Tomoe Y Nakamura
  • Noriaki Hirayama
  • Shigeo Wakabayashi
چکیده

The plasma membrane Na(+)/H(+) exchanger 1 (NHE1) is rapidly activated in response to various stimuli. The membrane-proximal cytoplasmic region (∼60 residues), termed the lipid-interacting domain (LID), is an important regulatory domain of NHE1. Here, we used a pharmacological approach to further characterize the role of LID in the regulation of NHE1. Pharmacological analysis using staurosporine-like indolocarbazole and bisindolylmaleimide compounds suggested that the phorbol ester- and receptor agonist-induced activation of NHE1 occurs through a protein kinase C-independent mechanism. In particular, only indolocarbazole compounds that inhibited NHE1 activation were able to interact with the LID, suggesting that the inhibition of NHE1 activation is achieved through the direct action of these compounds on the LID. Furthermore, in addition to phorbol esters and a receptor agonist, okadaic acid and hyperosmotic stress, which are known to activate NHE1 through unknown mechanisms, were found to promote membrane association of the LID concomitant with NHE1 activation; these effects were inhibited by staurosporine, as well as by a mutation in the LID. Binding experiments using the fluorescent ATP analog trinitrophenyl ATP revealed that ATP and the NHE1 activator phosphatidylinositol 4,5-bisphosphate bind competitively to the LID. These findings suggest that modulation of NHE1 activity by various activators and inhibitors occurs through the direct binding of these molecules to the LID, which alters the association of the LID with the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of "drug-likeness" of a small library of natural products using chemoinformatics

Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...

متن کامل

Human placental syncytiotrophoblast expresses two pharmacologically distinguishable types of Na(+)-H+ exchangers, NHE-1 in the maternal-facing (brush border) membrane and NHE-2 in the fetal-facing (basal) membrane.

We investigated whether highly purified preparations of basal (fetal-facing) membrane isolated from normal term human placentas possess Na(+)-H+ exchanger activity. Uptake of Na+ into basal membrane vesicles was stimulated many-fold by an outwardly directed H+ gradient. This H(+)-gradient-dependent uptake was inhibitable by amiloride and its analogues. Na+ uptake in these vesicles did not occur...

متن کامل

Assessment of "drug-likeness" of a small library of natural products using chemoinformatics

Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...

متن کامل

In Silico Design and Computational Study of Novel 1, 3, 4-Thiadiazole Derivatives as Potential Affinity with NA/H Exchanger Receptor for Anticonvulsant Activity

A series of novel 1, 3, 4-thiadiazole derivatives were designed keeping in view the structural requirement of pharmacophore and Quantitative structure activity relationship (QSAR) and evaluated in silico anticonvulsant activity. Docking procedures allow virtually screening a database of compounds and predict the strongest binder based on various scoring functions. In the docking study, the most...

متن کامل

Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II.

The Na+/H+ exchanger is a pH-regulatory protein that extrudes one H+ ion in exchange for one Na+ ion when intracellular pH declines. A number of studies have shown phorbol ester stimulation of activity in intact cells, leading to the idea that the exchanger is regulated by protein kinase C-mediated phosphorylation in vivo. cDNA encoding the protein has been cloned, and a recent model suggests a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2014